metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraiodido[methylenebis(diphenylphosphine oxide)- $\kappa^2 O:O'$]tin(IV) chloroform solvate

Allison M. Caldwell and Joseph M. Tanski*

Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA Correspondence e-mail: jotanski@vassar.edu

Received 24 April 2008; accepted 7 May 2008

Key indicators: single-crystal X-ray study; T = 125 K; mean σ (C–C) = 0.007 Å; R factor = 0.021; wR factor = 0.046; data-to-parameter ratio = 21.1.

The title compound, $[SnI_4(C_{25}H_{22}O_2P_2)]$ ·CHCl₃, crystallized from a chloroform solution of SnI₄ and the diphosphine CH₂(PPh₂)₂ exposed to air. The monomeric complex displays a distorted octahedral coordinaton for the tin(IV) atom with average Sn-I and Sn-O bond lengths of 2.79 (2) and 2.15 (1) Å, respectively.

Related literature

For examples of structurally characterized tin(IV)-halide complexes of phosphine oxide ligands, see: Genge *et al.* (1999); Davis *et al.* (2006*a*,*b*); Mohamed *et al.* (2004). For related literature, see: Levason *et al.* (2003); Woollins (2003).

Experimental

Crystal data

 $[SnI_4(C_{25}H_{22}O_2P_2)] \cdot CHCl_3$ $M_r = 1162.02$ Monoclinic, $P2_1$ a = 9.2639 (5) Å b = 19.0609 (11) Å c = 10.1991 (6) Å $\beta = 108.479$ (1)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{min} = 0.558, T_{max} = 0.912$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.045$ S = 1.037254 reflections 344 parameters 1 restraint $V = 1708.08 (17) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 4.71 \text{ mm}^{-1}$ T = 125 (2) K $0.14 \times 0.13 \times 0.02 \text{ mm}$

20220 measured reflections 7254 independent reflections 6994 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$

H-atom parameters constrained $\Delta \rho_{max} = 0.73 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.50 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 3512 Friedel pairs Flack parameter: 0.004 (14)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2178).

References

- Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Davis, M. F., Clarke, M., Levason, W., Reid, G. & Webster, M. (2006a). Eur. J. Inorg. Chem. pp. 2773–2782.

Davis, M. F., Levason, W., Reid, G. & Webster, M. (2006b). Polyhedron, 25, 930-936.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Genge, A. R. J., Levason, W. & Reid, G. (1999). *Inorg. Chim. Acta*, **288**, 142–149.
- Levason, W., Patel, R. & Reid, G. (2003). J. Organomet. Chem. 688, 280–282.Mohamed, E. M., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2004).Acta Cryst. C60, m172–m173.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Woollins, J. D. (2003). Inorganic Experiments: Second, Completely Revised and Enlarged Edition, edited by J. D. Woollins, pp. 36–37. Weinheim: Wiley.

Acta Cryst. (2008). E64, m894 [doi:10.1107/S1600536808013627]

Tetraiodido[methylenebis(diphenylphosphine oxide)- $\kappa^2 O:O'$]tin(IV) chloroform solvate

A. M. Caldwell and J. M. Tanski

Comment

Tin(IV) iodide may be readily prepared by oxidation of tin metal with iodine (Woollins, 2003). A relatively weak Lewis acid, SnI₄ nevertheless forms complexes with phosphines and phosphine oxides (Genge *et al.*, 1999; Davis *et al.*, 2006*a*). Similar phosphine and phosphine oxide complexes have been reported of the more Lewis acidic tin(IV) halides, SnX₄ (X = F, Cl, Br; Davis *et al.*, 2006*a*, 2006b; Genge *et al.*, 1999; Mohamed *et al.*, 2004). The phosphine oxide complexes are chiefly obtained by air oxidation of the phosphine ligands in the presence of the tin(IV) halide (Levason *et al.*, 2003).

Reaction of SnI_4 with $CH_2(PPh_2)_2$ in $CHCl_3$ in the presence of air afforded the title complex $[{CH_2(P(O)Ph_2)_2}SnI_4]$ ·CHCl₃, (I).

Complex (I) exhibits a distorted octahedral coordination at tin. The bis(phosphine oxide) results in a *cis* coordination of the ligand, with Sn—O distances of 2.136 (3) and 2.157 (3) Å, and Sn—I distances of 2.7770 (4), 2.7805 (4), 2.7911 (4) and 2.8199 (4) Å. The smallest bond angle about the pseudooctahedral tin center, $81.1 (1)^\circ$, corresponds to the O1—Sn—O2 angle of the chelating bis(phosphine oxide) ligand, with the opposite I2—Sn—I3 angle in the SnO₂I₂ plane being the largest, 100.82 (1)°. These distances and angles are similar to those reported for the related bis(phosphine oxide) complex {*o*-C₆H₄(P(O)Ph₂)₂}SnI₄ (Genge *et al.*, 1999). The SnO₂P₂C six-membered heterocycle in complex (I) is in a distorted boat conformation.

Experimental

Complex (I) was prepared by treating a chloroform (*ca* 5 ml) solution of SnI₄ (655 mg, 1.1 mmol) with an excess of $CH_2(PPh_2)_2$ (922 mg, 2.6 mmol) in the presence of air. Suitable crystals for single crystal X-ray analysis formed within 1 week at room temperature. A small sample of crystals was separated for structural analysis, and the remaining crystals were collected by filtration on a glass frit, washed three times with *ca* 5 ml of chloroform, and dried briefly under vacuum (yield 659 mg (54%) of a red-orange product). Elemental analysis confirmed that the compound was obtained as the chloroform solvate: anal. calcd. for (I) C, 26.87%; H, 1.99%; N, 0.00%. Found C, 26.97%; H, 1.73%; N, <0.02%. (Elemental analysis performed by Robertson Microlit Laboratories, Madison, NJ, USA.)

Refinement

H atoms on carbon were included in calculated positions and were refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$ of the parent atom.

Figures

Fig. 1. A view of complex (I) with displacement ellipsoids shown at the 50% probability level. H atoms have been omitted for clarity.

Tetraiodido[methylenebis(diphenylphosphine oxide)- $\kappa^2 O:O'$]tin(IV) chloroform solvate

Crystal data

$[SnI_4(C_{25}H_{22}O_2P_2)]\cdot CHCl_3$	$F_{000} = 1076$
$M_r = 1162.02$	$D_{\rm x} = 2.259 {\rm Mg m}^{-3}$
Monoclinic, P2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 9838 reflections
a = 9.2639 (5) Å	$\theta = 2.3 - 28.3^{\circ}$
b = 19.0609 (11) Å	$\mu = 4.71 \text{ mm}^{-1}$
c = 10.1991 (6) Å	T = 125 (2) K
$\beta = 108.479 \ (1)^{\circ}$	Plate, orange
$V = 1708.08 (17) \text{ Å}^3$	$0.14\times0.13\times0.02~mm$
Z = 2	

Data collection

Bruker APEXII CCD diffractometer	7254 independent reflections
Radiation source: fine-focus sealed tube	6994 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.027$
T = 125(2) K	$\theta_{\text{max}} = 26.7^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2007)	$h = -11 \rightarrow 11$
$T_{\min} = 0.558, T_{\max} = 0.912$	$k = -24 \rightarrow 24$
20220 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.021$	$w = 1/[\sigma^2(F_0^2) + (0.0195P)^2 + 0.2278P]$

	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.046$	$(\Delta/\sigma)_{\rm max} = 0.002$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.73 \text{ e} \text{ Å}^{-3}$
7254 reflections	$\Delta \rho_{min} = -0.50 \text{ e } \text{\AA}^{-3}$
344 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 3512 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.004 (14)
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. A suitable crystal was mounted in a nylon loop with Paratone-*N* cryoprotectant oil and data was collected on a Bruker *APEX* 2 CCD platform diffractometer. The data was cut off at 0.79 Å because data in the highest resolution range (0.75-0.78 Å) was very incomplete, acting to reduce the overall completeness to 99.4%. The structure was solved using direct methods and standard difference map techniques, and was refined by full-matrix least-squares procedures on F^2 with *SHELXTL* Version 6.14 (Sheldrick, 2008). One least squares restraint is required for the floating origin of space group *P*2₁. All non-hydrogen atoms were refined anisotropically. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 = \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger. EXTI refined to zero and was removed from the refinement.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sn	0.83582 (3)	0.791335 (15)	0.25375 (3)	0.01631 (6)
I1	0.75473 (3)	0.673729 (13)	0.38291 (3)	0.02340 (7)
I2	0.98608 (3)	0.706487 (16)	0.11538 (3)	0.02731 (7)
13	1.07128 (3)	0.821230 (17)	0.49436 (3)	0.02768 (7)
I4	0.89066 (3)	0.910079 (14)	0.11840 (3)	0.02389 (7)
P1	0.54635 (12)	0.85261 (5)	0.35831 (11)	0.0155 (2)
P2	0.45533 (11)	0.79067 (6)	0.06921 (10)	0.0162 (2)
01	0.6960 (3)	0.85997 (14)	0.3271 (3)	0.0178 (6)
O2	0.6235 (3)	0.77647 (14)	0.0902 (3)	0.0166 (6)
C1	0.3884 (5)	0.8709 (2)	-0.0204 (4)	0.0193 (9)
C2	0.2576 (5)	0.9026 (3)	-0.0116 (5)	0.0329 (11)
H2A	0.2042	0.8827	0.0450	0.039*
C3	0.2044 (6)	0.9636 (3)	-0.0854 (6)	0.0420 (13)
H3A	0.1151	0.9859	-0.0789	0.050*
C4	0.2817 (7)	0.9918 (3)	-0.1683 (6)	0.0487 (15)
H4A	0.2453	1.0336	-0.2187	0.058*
C5	0.4107 (6)	0.9603 (3)	-0.1788 (5)	0.0372 (13)
H5A	0.4625	0.9798	-0.2371	0.045*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C6	0.4650 (5)	0.9000 (3)	-0.1042 (4)	0.0272 (10)
H6A	0.5551	0.8784	-0.1102	0.033*
C7	0.3424 (5)	0.7198 (2)	-0.0266 (4)	0.0187 (9)
C8	0.2165 (5)	0.7324 (3)	-0.1412 (4)	0.0269 (10)
H8A	0.1873	0.7791	-0.1699	0.032*
C9	0.1332 (5)	0.6761 (3)	-0.2139 (4)	0.0316 (11)
H9A	0.0471	0.6843	-0.2929	0.038*
C10	0.1755 (6)	0.6084 (3)	-0.1715 (5)	0.0303 (11)
H10A	0.1178	0.5701	-0.2210	0.036*
C11	0.3025 (6)	0.5957 (3)	-0.0562 (5)	0.0322 (11)
H11A	0.3310	0.5490	-0.0267	0.039*
C12	0.3863 (5)	0.6516 (2)	0.0146 (5)	0.0253 (10)
H12A	0.4744	0.6433	0.0918	0.030*
C13	0.4575 (5)	0.9369 (2)	0.3409 (4)	0.0194 (9)
C14	0.3480 (5)	0.9506 (2)	0.4051 (5)	0.0280 (10)
H14A	0.3271	0.9166	0.4649	0.034*
C15	0.2702 (5)	1.0132 (3)	0.3818 (6)	0.0341 (12)
H15A	0.1950	1.0220	0.4249	0.041*
C16	0.3002 (6)	1.0628 (2)	0.2971 (5)	0.0345 (12)
H16A	0.2462	1.1059	0.2820	0.041*
C17	0.4098 (6)	1.0500 (2)	0.2331 (5)	0.0320 (11)
H17A	0.4297	1.0841	0.1732	0.038*
C18	0.4897 (5)	0.9874 (2)	0.2569 (5)	0.0255 (10)
H18A	0.5667	0.9792	0.2156	0.031*
C19	0.5743 (5)	0.8157 (2)	0.5259 (4)	0.0181 (8)
C20	0.4710 (5)	0.7703 (2)	0.5528 (4)	0.0218 (9)
H20A	0.3760	0.7615	0.4841	0.026*
C21	0.5063 (5)	0.7376 (2)	0.6807 (4)	0.0244 (10)
H21A	0.4348	0.7069	0.6998	0.029*
C22	0.6457 (6)	0.7497 (2)	0.7807 (4)	0.0285 (10)
H22A	0.6704	0.7264	0.8674	0.034*
C23	0.7478 (5)	0.7954 (2)	0.7542 (4)	0.0272 (10)
H23A	0.8426	0.8038	0.8235	0.033*
C24	0.7148 (5)	0.8295 (2)	0.6282 (4)	0.0255 (9)
H24A	0.7853	0.8615	0.6110	0.031*
C25	0.4202 (4)	0.7925 (2)	0.2343 (4)	0.0168 (8)
H25A	0.4335	0.7447	0.2740	0.020*
H25B	0.3133	0.8067	0.2192	0.020*
C26	0.1709 (7)	0.5583 (3)	0.3620 (5)	0.0447 (14)
H26A	0.0865	0.5924	0.3219	0.054*
Cl1	0.3366 (3)	0.60552 (10)	0.4432 (2)	0.1039 (9)
Cl2	0.19826 (17)	0.50905 (9)	0.22600 (15)	0.0518 (4)
Cl3	0.11844 (19)	0.50376 (8)	0.47642 (15)	0.0522 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn	0.01542 (13)	0.01735 (13)	0.01582 (13)	0.00235 (11)	0.00450 (10)	0.00282 (10)

I1	0.02927 (16)	0.01839 (14)	0.02235 (14)	0.00030 (12)	0.00790 (12)	0.00269 (11)
I2	0.03002 (16)	0.03117 (15)	0.02356 (14)	0.01382 (13)	0.01252 (12)	0.00496 (13)
13	0.01861 (14)	0.03691 (17)	0.02288 (14)	-0.00201 (13)	0.00001 (11)	0.00444 (13)
I4	0.02432 (14)	0.02220 (14)	0.02621 (15)	-0.00028 (12)	0.00951 (12)	0.00677 (11)
P1	0.0163 (5)	0.0144 (5)	0.0159 (5)	-0.0010 (4)	0.0053 (4)	-0.0008 (4)
P2	0.0160 (5)	0.0178 (5)	0.0132 (5)	0.0002 (5)	0.0027 (4)	0.0005 (4)
O1	0.0178 (14)	0.0193 (15)	0.0154 (14)	-0.0023 (11)	0.0041 (11)	-0.0042 (11)
O2	0.0173 (14)	0.0179 (15)	0.0133 (13)	0.0013 (11)	0.0029 (11)	0.0007 (11)
C1	0.024 (2)	0.015 (2)	0.016 (2)	-0.0008 (17)	0.0017 (17)	0.0056 (16)
C2	0.021 (2)	0.037 (3)	0.038 (3)	0.006 (2)	0.006 (2)	0.009 (2)
C3	0.035 (3)	0.037 (3)	0.050 (3)	0.012 (2)	0.006 (3)	0.019 (3)
C4	0.037 (3)	0.035 (3)	0.060 (4)	0.009 (2)	-0.005 (3)	0.023 (3)
C5	0.034 (3)	0.036 (3)	0.035 (3)	-0.009 (2)	0.003 (2)	0.017 (2)
C6	0.020 (2)	0.034 (3)	0.024 (2)	-0.001 (2)	0.0028 (18)	0.007 (2)
C7	0.018 (2)	0.022 (2)	0.0162 (19)	-0.0016 (17)	0.0069 (16)	-0.0033 (17)
C8	0.029 (3)	0.027 (2)	0.021 (2)	-0.006 (2)	0.0034 (19)	-0.0019 (18)
C9	0.030 (3)	0.040 (3)	0.018 (2)	-0.006 (2)	-0.0014 (19)	0.000 (2)
C10	0.033 (3)	0.033 (3)	0.023 (2)	-0.011 (2)	0.005 (2)	-0.007 (2)
C11	0.038 (3)	0.025 (3)	0.030 (3)	-0.003 (2)	0.006 (2)	-0.002 (2)
C12	0.029 (3)	0.023 (2)	0.019 (2)	-0.0035 (19)	0.0013 (19)	-0.0034 (18)
C13	0.017 (2)	0.0147 (19)	0.023 (2)	0.0010 (16)	0.0021 (17)	-0.0006 (17)
C14	0.026 (2)	0.020 (2)	0.043 (3)	-0.0018 (19)	0.019 (2)	-0.005 (2)
C15	0.026 (3)	0.026 (3)	0.058 (3)	0.000 (2)	0.025 (2)	-0.008 (2)
C16	0.035 (3)	0.016 (2)	0.046 (3)	0.006 (2)	0.004 (2)	-0.002 (2)
C17	0.040 (3)	0.023 (2)	0.033 (3)	0.000 (2)	0.012 (2)	0.004 (2)
C18	0.030 (2)	0.020 (2)	0.026 (2)	-0.0014 (19)	0.010 (2)	-0.0008 (18)
C19	0.025 (2)	0.016 (2)	0.0158 (19)	0.0014 (17)	0.0098 (17)	-0.0028 (16)
C20	0.017 (2)	0.025 (2)	0.024 (2)	-0.0006 (17)	0.0089 (18)	-0.0023 (17)
C21	0.028 (2)	0.027 (2)	0.023 (2)	0.0009 (19)	0.0145 (19)	0.0016 (18)
C22	0.046 (3)	0.027 (2)	0.014 (2)	0.005 (2)	0.011 (2)	0.0030 (18)
C23	0.032 (3)	0.033 (3)	0.015 (2)	0.004 (2)	0.0050 (18)	-0.0048 (19)
C24	0.026 (2)	0.026 (2)	0.022 (2)	-0.0040 (19)	0.0036 (18)	-0.0037 (19)
C25	0.0190 (19)	0.0148 (18)	0.0162 (19)	-0.0010 (18)	0.0048 (15)	0.0025 (17)
C26	0.059 (4)	0.027 (3)	0.036 (3)	-0.003 (3)	-0.002 (3)	0.010 (2)
Cl1	0.1176 (17)	0.0573 (12)	0.0806 (14)	-0.0501 (12)	-0.0484 (12)	0.0197 (10)
Cl2	0.0441 (8)	0.0688 (10)	0.0441 (8)	0.0007 (7)	0.0161 (7)	0.0017 (7)
Cl3	0.0719 (10)	0.0461 (8)	0.0415 (8)	0.0182 (8)	0.0221 (7)	0.0119 (7)

Geometric parameters (Å, °)

Sn—O1	2.136 (3)	C10—H10A	0.9500
Sn—O2	2.157 (3)	C11—C12	1.379 (6)
Sn—I3	2.7770 (4)	C11—H11A	0.9500
Sn—I4	2.7805 (4)	C12—H12A	0.9500
Sn—I2	2.7911 (4)	C13—C18	1.383 (6)
Sn—I1	2.8199 (4)	C13—C14	1.395 (6)
P1—O1	1.524 (3)	C14—C15	1.375 (7)
P1—C13	1.788 (4)	C14—H14A	0.9500
P1—C19	1.790 (4)	C15—C16	1.366 (7)

P1—C25	1.828 (4)	C15—H15A	0.9500
P2—O2	1.527 (3)	C16—C17	1.392 (7)
P2—C1	1.788 (4)	C16—H16A	0.9500
P2—C7	1.795 (4)	C17—C18	1.383 (6)
P2—C25	1.814 (4)	С17—Н17А	0.9500
C1—C2	1.383 (6)	C18—H18A	0.9500
C1—C6	1.388 (6)	C19—C20	1.381 (6)
C2—C3	1.389 (7)	C19—C24	1.411 (6)
C2—H2A	0.9500	C20—C21	1.387 (6)
C3—C4	1.378 (8)	C20—H20A	0.9500
С3—НЗА	0.9500	C21—C22	1.388 (6)
C4—C5	1.372 (8)	C21—H21A	0.9500
C4—H4A	0.9500	C22—C23	1.375 (7)
C5—C6	1.382 (7)	C22—H22A	0.9500
C5—H5A	0.9500	C23—C24	1.385 (6)
С6—Н6А	0.9500	C23—H23A	0.9500
С7—С8	1.386 (6)	C24—H24A	0.9500
C7—C12	1.387 (6)	C25—H25A	0.9900
C8—C9	1.391 (6)	С25—Н25В	0.9900
C8—H8A	0.9500	C26—Cl3	1.742 (6)
C9—C10	1.377 (7)	C26—Cl1	1.746 (6)
С9—Н9А	0.9500	C26—C12	1.758 (6)
C10—C11	1.397 (7)	C26—H26A	1.0000
O1—Sn—O2	81.11 (10)	С9—С10—Н10А	119.8
O1—Sn—I3	87.62 (7)	C11—C10—H10A	119.8
O2—Sn—I3	168.16 (7)	C12—C11—C10	119.4 (4)
O1—Sn—I4	84.36 (8)	C12—C11—H11A	120.3
O2—Sn—I4	89.34 (7)	C10-C11-H11A	120.3
I3—Sn—I4	93.196 (12)	C11—C12—C7	120.2 (4)
O1—Sn—I2	170.71 (7)	C11—C12—H12A	119.9
O2—Sn—I2	90.68 (7)	C7—C12—H12A	119.9
I3—Sn—I2	100.824 (13)	C18—C13—C14	119.5 (4)
I4—Sn—I2	91.247 (12)	C18—C13—P1	120.3 (3)
O1—Sn—I1	92.43 (8)	C14—C13—P1	120.1 (3)
O2—Sn—I1	86.79 (7)	C15—C14—C13	120.0 (4)
I3—Sn—I1	90.070 (12)	C15—C14—H14A	120.0
I4—Sn—I1	175.320 (14)	C13—C14—H14A	120.0
I2—Sn—I1	91.431 (12)	C16—C15—C14	120.6 (4)
O1—P1—C13	108.51 (18)	С16—С15—Н15А	119.7
O1—P1—C19	111.71 (18)	C14—C15—H15A	119.7
C13—P1—C19	111.74 (19)	C15—C16—C17	120.0 (4)
O1—P1—C25	109.74 (17)	C15—C16—H16A	120.0
C13—P1—C25	108.71 (19)	C17—C16—H16A	120.0
C19—P1—C25	106.37 (19)	C18—C17—C16	119.9 (4)
O2—P2—C1	113.34 (18)	С18—С17—Н17А	120.1
O2—P2—C7	109.60 (18)	С16—С17—Н17А	120.1
C1—P2—C7	108.48 (19)	C13—C18—C17	120.0 (4)
O2—P2—C25	110.39 (17)	C13—C18—H18A	120.0
C1—P2—C25	108.8 (2)	C17—C18—H18A	120.0

C7—P2—C25	105.94 (19)	C20—C19—C24	120.3 (4)
P1—O1—Sn	135.20 (17)	C20-C19-P1	122.4 (3)
P2—O2—Sn	136.45 (16)	C24—C19—P1	117.0 (3)
C2—C1—C6	119.7 (4)	C19—C20—C21	119.7 (4)
C2—C1—P2	120.7 (3)	С19—С20—Н20А	120.1
C6—C1—P2	119.6 (3)	C21—C20—H20A	120.1
C1—C2—C3	119.9 (5)	C20—C21—C22	120.3 (4)
C1—C2—H2A	120.0	C20-C21-H21A	119.8
C3—C2—H2A	120.0	C22—C21—H21A	119.8
C4—C3—C2	119.7 (5)	C23—C22—C21	119.9 (4)
С4—С3—НЗА	120.2	C23—C22—H22A	120.1
С2—С3—НЗА	120.2	C21—C22—H22A	120.1
C5—C4—C3	120.8 (5)	C22—C23—C24	121.1 (4)
C5—C4—H4A	119.6	С22—С23—Н23А	119.5
C3—C4—H4A	119.6	C24—C23—H23A	119.5
C4—C5—C6	119.7 (5)	C23—C24—C19	118.7 (4)
C4—C5—H5A	120.1	C23—C24—H24A	120.7
С6—С5—Н5А	120.1	C19—C24—H24A	120.7
C5—C6—C1	120.2 (4)	P2-C25-P1	113.0 (2)
С5—С6—Н6А	119.9	P2-C25-H25A	109.0
С1—С6—Н6А	119.9	P1-C25-H25A	109.0
C8—C7—C12	120.3 (4)	Р2—С25—Н25В	109.0
C8—C7—P2	121.2 (3)	P1—C25—H25B	109.0
C12—C7—P2	118.4 (3)	H25A—C25—H25B	107.8
С7—С8—С9	119.5 (4)	Cl3—C26—Cl1	112.4 (3)
С7—С8—Н8А	120.2	Cl3—C26—Cl2	110.5 (3)
С9—С8—Н8А	120.2	Cl1—C26—Cl2	108.9 (4)
С10—С9—С8	120.0 (4)	Cl3—C26—H26A	108.3
С10—С9—Н9А	120.0	Cl1—C26—H26A	108.3
С8—С9—Н9А	120.0	Cl2—C26—H26A	108.3
C9—C10—C11	120.4 (4)		
C13—P1—O1—Sn	-154.2 (2)	C9-C10-C11-C12	-0.5 (8)
C19—P1—O1—Sn	82.2 (3)	C10-C11-C12-C7	1.6 (7)
C25—P1—O1—Sn	-35.5 (3)	C8—C7—C12—C11	-1.7 (7)
O2—Sn—O1—P1	54.1 (2)	P2-C7-C12-C11	179.9 (4)
I3—Sn—O1—P1	-122.2 (2)	O1—P1—C13—C18	24.9 (4)
I4—Sn—O1—P1	144.3 (2)	C19—P1—C13—C18	148.5 (4)
I1—Sn—O1—P1	-32.3 (2)	C25—P1—C13—C18	-94.4 (4)
C1—P2—O2—Sn	97.2 (3)	O1—P1—C13—C14	-159.1 (3)
C7—P2—O2—Sn	-141.4 (2)	C19—P1—C13—C14	-35.5 (4)
C25—P2—O2—Sn	-25.1 (3)	C25—P1—C13—C14	81.6 (4)
O1—Sn—O2—P2	-16.7 (2)	C18-C13-C14-C15	1.7 (7)
I3—Sn—O2—P2	1.4 (6)	P1-C13-C14-C15	-174.3 (4)
I4—Sn—O2—P2	-101.1 (2)	C13-C14-C15-C16	-0.7 (8)
I2—Sn—O2—P2	167.6 (2)	C14—C15—C16—C17	0.3 (8)
I1—Sn—O2—P2	76.2 (2)	C15—C16—C17—C18	-0.9 (8)
O2—P2—C1—C2	-159.9 (3)	C14—C13—C18—C17	-2.3 (7)
C7—P2—C1—C2	78.1 (4)	P1-C13-C18-C17	173.7 (3)
C25—P2—C1—C2	-36.7 (4)	C16—C17—C18—C13	1.9 (7)

O2—P2—C1—C6	22.7 (4)	O1—P1—C19—C20	-144.0 (3)
C7—P2—C1—C6	-99.3 (4)	C13—P1—C19—C20	94.2 (4)
C25—P2—C1—C6	145.9 (3)	C25—P1—C19—C20	-24.3 (4)
C6—C1—C2—C3	-0.5 (7)	O1—P1—C19—C24	30.0 (4)
P2—C1—C2—C3	-177.9 (4)	C13—P1—C19—C24	-91.8 (4)
C1—C2—C3—C4	0.6 (8)	C25—P1—C19—C24	149.7 (3)
C2—C3—C4—C5	0.1 (9)	C24—C19—C20—C21	-0.6 (6)
C3—C4—C5—C6	-0.8 (9)	P1-C19-C20-C21	173.2 (3)
C4—C5—C6—C1	0.9 (8)	C19—C20—C21—C22	-0.8 (7)
C2—C1—C6—C5	-0.3 (7)	C20—C21—C22—C23	1.5 (7)
P2-C1-C6-C5	177.1 (4)	C21—C22—C23—C24	-0.6 (7)
O2—P2—C7—C8	-130.5 (4)	C22—C23—C24—C19	-0.8 (7)
C1—P2—C7—C8	-6.3 (4)	C20-C19-C24-C23	1.4 (6)
C25—P2—C7—C8	110.4 (4)	P1-C19-C24-C23	-172.7 (3)
O2—P2—C7—C12	47.8 (4)	O2—P2—C25—P1	52.7 (3)
C1—P2—C7—C12	172.0 (3)	C1—P2—C25—P1	-72.2 (3)
C25—P2—C7—C12	-71.3 (4)	C7—P2—C25—P1	171.3 (2)
C12—C7—C8—C9	0.8 (7)	O1—P1—C25—P2	-27.7 (3)
P2—C7—C8—C9	179.1 (3)	C13—P1—C25—P2	90.8 (3)
C7—C8—C9—C10	0.3 (7)	C19—P1—C25—P2	-148.7 (2)
C8—C9—C10—C11	-0.5 (7)		

